Agenda

1) Product Spectrum

2) Project Phase I

3) Finish up "Product Dissection"

4) Function Structure

5) Product Design
 - FAST diagrams
 - Function structure
 - Morphological matrix
(1) Product Spectrum

"Product" refers to a spectrum

<table>
<thead>
<tr>
<th>Value</th>
<th>Category</th>
<th>Low-tech (Physical fitnes)</th>
<th>Example</th>
<th>High-tech (Business productivity software)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Product</td>
<td>jump rope</td>
<td>Microsoft Excel</td>
<td></td>
</tr>
<tr>
<td>$$</td>
<td>Solution</td>
<td>fitness gym</td>
<td>Microsoft Office</td>
<td></td>
</tr>
<tr>
<td>$$$</td>
<td>Services</td>
<td>personal trainer</td>
<td>Microsoft Office 365 (Cloud)</td>
<td></td>
</tr>
<tr>
<td>$$$$</td>
<td>Experience</td>
<td>health spa</td>
<td>Microsoft Office 365 on a tablet running Windows 10</td>
<td></td>
</tr>
</tbody>
</table>
Project Phase I

To identify a project as "best" we need high-level criteria to narrow down the ideas.

(1) Technical Feasibility

- Can the idea be realized?

Typical goal for a startup: a working prototype in a reasonable amount of time (e.g. 3-4 months) at reasonable cost ($500k - $2m)

(2) Commercialization

Is there a market (customers willing and able to pay for your product)
<table>
<thead>
<tr>
<th>Technical Feasibility</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Microsoft Office</td>
<td>Iphone</td>
</tr>
<tr>
<td>Low</td>
<td>Cure for Ebola</td>
<td>Cure for Cancer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commercialization Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
<tr>
<td>High</td>
</tr>
</tbody>
</table>

Place your product ideas into the matrix and select from boxes 1 or 2.

If necessary, combine or alter ideas
Make sure the group likes the idea!
(3) More on Product Dissection

When is product dissection useful?

(1) Understand the relationship between a product's function and form
 (why) (how)

(2) Identify how a product can fail

(3) Clarify what is new and different about a product

(4) Designing new products
(4) Function Structure

To design a new product (specify its form), we need to determine what the product will do (specify its functions).

Functions → Form; NOT Form → Function

We need an abstract representation of the product that allows us to create a design concept (form) for the product.

Example:

```
  Lightbulb
    +--- Create light
    |     +--- Receive energy
    |          +--- Transform energy to light
```

This abstract representation is called the function structure for the product.
(5) Creating a new product
(Product design)

Challenge: design new products using the best possible form for the desired functions.

Approach: Systematically explore the design space that is defined by the product's function structure.

Product Design Process: 9 steps

Step 1: State the overall purpose or objective of the new product.

Example (lightbulb)

Design an energy efficient product that produces light in the home.

Step 2: Dissect existing products that are similar to the desired product.

Example: lecture 3 lightbulb
Step 3: Create a function structure for the new product

1. Remove the realizations ("hows") from the FAST diagram.
2. Review functions ("whys") for any that imply a specific form.
3. Add, remove, and/or modify the subfunctions until the function structure addresses the objectives in Step 1.

Example: energy-efficient lightbulb

```
Create light
```
```
  Store energy
  Receive energy
  Transform energy into light
  Reduce energy consumption
```
Step 4: For each leaf (subfunction) in a function-structure tree, generate several alternatives — "solution-principles" — for realizing the subfunctions.

(Use structured brainstorming!)

Step 5: Organize the sub-functions and solution-principles into a matrix (table).

F.S.	SP1	SP2	SP3	SP4	...
Receive energy	120V Power Lines	Solar	Chemical Reaction	Nuclear Power	...
Translate energy to light	Filament	LED	Bioluminescence	CFL	...
Reducing energy consumption	None	Timer	Dimmer	Motion sensor	...
					...
Step 6: Use morphological matrix to generate several alternative design concepts.

Step 7: Write a brief description of how each concept works.

Example: Solar panels on the bulb charge a battery pack located in the socket that powers an LED. Motion sensor turns off the LED when the room is empty.
Step 8: Create a set of criteria to evaluate how well the design concepts satisfy the user needs (design objectives), and compare.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Concept 1</th>
<th>Concept 2</th>
<th>Concept 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical feasibility</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Commercial potential</td>
<td>1</td>
<td>3-4</td>
<td>4</td>
</tr>
<tr>
<td>Performance</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Price</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Scale: 1 = Poor, 5 = Excellent

Step 9: Select the best design concept, and develop it into a product.